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Abstract. In most applications of neural network models one has to consider Sets of correlated 
data. We study the problem of the storage of associared patterns in neural network memories. 
We consider two basic types of correlation: 'semantic' ones-among the different patterns- 
and 'spatial' ones-among the different sites of the network. We apply Gardner's program to 
evaluate optimal storage conditions for both kinds of correlation. The 'spatial' ones worsen, 
generally speaking. the storage properties of a simple perceptron, while they improve them for 
the Hopfield network. In the  se of 'semantic' correlations we obtain bounds of the critical 
capacity for both kinds of networks; the storage ratio of the perceptron may be significantly 
increased in this cse. 

1. Introduction 

One of the most important problems in the theory of attractor neural networks concerns 
learning. In particular, this problem consists of answering the question concerning the 
critical storage capacity. The best approach to its study has been proposed by Gardner [l]. 
Originally, Gardner's program was applied to statistically independent, unbiased patterns. 
In this case the critical capacity for errorless storage is a, = ~ / G ( K ) ,  where 

whereas K determines the stability of the stored patterns. Gardner also studied the case of 
biased patterns, and showed that in the limit of maximal bias or, in another words, sparse 
coding [2], cr, tends to infinity (see also Wdlshaw et nl [3]). 

Gardner's program has since been extended to various models, cf [6-131. There have 
been, however, practically no studies of statistically correlated patterns (see, e.g., [14,15]). 
Therefore it is very important to study the problem of the learning of correlated patterns 
both in the context of single-layer perceptrons [16], as well as multilayered networks and 
auto-associative ones of the Hopfield-Little type [17,18]. 

In recent work [19] we have extended Gardner's program to 'semantically' correlated 
patterns. Using this approach we have calculated ac, and showed that in the limit of large 
correlation length L, --f 03, ac scales as L,. 

5 P e m e n t  address: Centrum Fizyki Teoretymej Polskiej Akademii Nauk. Al. Lotnik6w 32/46,02-568 Warsaw, 
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In this paper we treat the storage of sets of correlated data in a more general perspective: 
we divide the discussion of this problem into the two cases-‘semantically’ and ‘spatially’ 
correlated pattems. Let us denote them by e;, where f i  enumerates pattems and j sites in 
the network, and gr = +1 or -1. Throughout this paper we consider only the unbiased 
patterns for which 

((t;)) = 0. 

On the other hand, we introduce ’spatial‘ correlations in the form 

where Cjy is a correlation matrix, and ‘semantic’ ones 

where C,,, is a matrix of ‘semantic’ correlations. Both these matrices are symmetric and 
positively defined. 

Many examples of ’spatial’ correlations are known in the theory of visual information 
processing (cf [20]), whereas ‘semantic’ ones arise when we consider the learning of 
categories, subcategories of patterns, etc. It has recently been demonstrated that attractors 
observed in neurophysiological experiments are ‘semantically’ correlated [21,22]. Here the 
amount of association depends on the temporal interval between the learning times of the 
corresponding patterns. 

The main aim of this paper is, to present and discuss the storage of correlated patterns 
within the framework of Gardner’s approach. The plan of the paper is as follows. In 
sections 2 and 3 we present and discuss the problem of ‘spatially’ correlated patterns. 
The results concerning a simple perceptron are described in section 2, while in section 3 
we investigate the Hopfield neural network. Similar considerations, but for ‘semantically’ 
correlated data in the case of a simple perceptron are presented in sections 4 and 5. This 
theory is extended to the case of Hopfield networks in section 6. Section 7 contains the 
final results and discussions. 

2. Storage of ‘spatially’ correlated patterns in a perceptron 

In this section we investigate the patterns that are correlated in a ‘spatial‘ way (3). We can 
find the exact curve which determines the optimal storage in the control parameters (a, K )  

space. We show that the critical capacity does not exceed Cover’s limit [23], a, = 2 for 
K = 0. The results of this section have been reported by Monasson [24]. We therefore skip 
most of the calculations and present only final expressions for the storage capacity in the 
limit of small correlations. These general expressions have been discussed by us in [25]. 

We consider here a perceptron with N binary neurons in the input layer, uj = f l ,  and 
a single output unit, q. The propagation rule takes the form q = sign cy==, Jju, 
investigate the existence conditions for a set of connections Jj that lead from a given set 
of a N  input patterns e?, f i  = 1,. . . , @ N .  to a given output q,, with a given stability K .  

( ). we 
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In order to do this we calculate the fractional volume in the interaction space of this set of 
connections, 

Note that we normalize Jj according to J,? = N .  The critical storage a&) is attained 
when the averaged logarithm of V tends to -CO [I]. The expectation ((ln V ) )  is obtained 
with the help of the replica method 

((V")) - 1 ((ln V ) )  = lim 
n-0 n 

In the evaluation of expression (5 j one proceeds in a way described in detail in [ 1,9]. 
After performing the average (3). the mean of the nth power of the fractional volume V 
reads 

(7) 

where C is a constant, which plays no role in the further considerations. Note that result 
(7), as in [I], does not depend on outputs qw This property of ((In V ) )  is characteristic for 
unbiased 'spatially' correlated data. It does not hold, as we shall see, for 'semantically' 
correlated ones. 

In order to disentangle the second term from the exponent we introduce the order 
parameters q@,  Qa defined as follows 

and their conjugated counterparts f"B and Fa, respectively. Note that a, fl  = 1,. . . , n 
denote here the replica indices-see 111. 

In order to perform the integration over J,' in (7) we change the integration variables 
introducing the set of eigenvectors {$]k of the correlation matrix F. They then fulfil 

Cjj>$ = ck€j k 

j .  

for~each j = 1, . . . , N and k = 1, . . . , N ,  where c k  denote eigenvalues of the correlation 
matrix. The c k  are real and non-negative. When neurons are arranged in a t o w ,  &d the 
correlation matrix is translationally (rotationally) invariant, 
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the eigenvectors 6; are Fourier components: 

W Tarkowski and M Lewenstein 

€j" = m c o s  (On j )  

or 

c ; = m s i n ( & j )  

with wk = (2n /N)k ,  k = 1 ,  . . . N and 

€Q I = l /f i .  

We introduce new variables x, expanding 

Jj  = x$. 
k 

The order parameters quo, Q' thus become: 

(14) 

We proceed then along the lines of [1,24] and perform the Gaussian integrals over the 
V_aables x and 7. Note that the latter integration may now be done separately for each 
J k .  We also anticipate a replica-symmetric saddle point and substitute qun = q.  Q' = Q, 
f a @  = f and F" = F .  The free energy density function F, which has to be extremized at 
the saddle point, takes in the limit n -+ 0 the form 

where 

The symbol ((.))= denotes here the averaging over the spectrum of the correlation matrix 
Cjf, the Gaussian measure 
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and the function H is defined as follows 

H (x )  = lm Dt. 

After this calculation we may apply the saddle-oint technique to the fnnction 3 in order 
to evaluate (7). One may notice that the critical point of vanishing of V is attained'when 
the order parameters q and Q become equal. In the limit q + Q the free energy density, 
and also the saddle-oint equations, may be simplified enormously. We simply anticipate 
that at the criticallity the order parameters behave as 

E = E / ( Q - q )  

f = ?/(e - 4)' 

f - F = E / ( Q  - 4 ) .  

We also evaluate the asymptotic form of the function GI for q + Q 

where the symbol ((.))[ now denotes averaging over the Gaussian variable f with the measnre 
D f .  The saddle-oint equations then become 

I 

f = a P  

g= aR 

where the functions P, R are given by 

P = /Df (K f f & ) *  0 (K f t&) 

R = J D t  (.+[A) L O  ( E +  t&). 

(31) 

(32) 

. 

4% 

Note that the variable ( Q  - q )  does not enter these equations in the asymptotic limit. 
Since there are five equations for four variables this means, that (26)-(30) imply the 
additional constraint for a control parameter, that is the condition for the critical capacity. 
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Equations (29) and (30) may be solved with respect to Yand g. Inserting the solution into 
the three remaining equations for E", q and a one obtains 

From these equations we may obtain the functional (a, K )  dependence. This task must be 
achieved using numerical methods. One may, however, easily check that in Cover's limit 
[23] K + 0, a = 2, just as in the uncorrelated case [l, 191. In this limit P = q/2, R = 1/2. 
The corresponding solution of (33)-(35) has the form = 0, q = I/ ((l/C))=. The fact 
that a, ( K  = 0) = 2 agrees with the result of Cover's original work, in which it was proven 
that whenever the outputs remain unbiased and independent random variables (uncorrelated 
to the inputs), then one aiways obtains a, = 2 for the zeroth value of the stability parameter 

The critical curves for exponentially correlated sites were plotted by Monasson in his 
recent work [24]. They indicate that for the case of exponential correlations a&) is a 
decreasing function of K and that a&) < I~ ," (K) ,  where @(K)  denotes Gardner's original 
result, which is valid for uncorrelated pattems. The analysis presented here is for an arbitrary 
form of the correlation matrix. The critical curves depend significantly on the width of the 
distribution of C, but we expect (cf [26]) that they do not depend strongly on its shape. 

Here, instead of solving (33)-(35) numerically, we present an analytical expression for 
the solutions, valid in the limit of weak correlations. In order to do this we observe that 
the uncorrelated case corresponds to the density of the eigenvalues of the correlation matsix 
simply equal to 1. In the limit of weak correlations we may then expand the averages 
over the distribution of C on the right-hand side of (33)-(35) in 6C = C - 1 up to the 
lowest non-vanishing terms of the order of (SC'). We may then solve equations (33)435) 
perturbatively in (SC'). As a result we obtain 

K .  

= Il/G(K)I { 1 - s ( K )  [ I  - S ( K ) I  (ac2)c) (36) 

where the function S ( K )  is defined as follows 

S ( K )  = W G W )  (((K +W(K + t ) ) ) , .  (37) 

The form of the dependences (36) and (37) implies that U&) < G$(K), because the 
inequality 0 < S ( K )  < 1 is fulfilled. Expression (36) provides an elegant estimate of 
a&) which is valid for arbitrary correlation matrices. 

3. 'Spatial' correlations of data in the Hopfield network 

As in the previous section, calculations may be done for the Hopfield neural network. This 
problem has recently been solved by Monasson [27] and independently by us [25]. We 
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again skip most of the technical details of the analysis since they can be found in [27]. We 
present, however, an elegant final expression for the storage capacity that holds for arbitrary 
correlation matrices (see also (251). 

Let us consider the network with N binary nodes, uj = zkl, which follows a propagation 
rule of the form 

ui (t + at) = sign J ~ ~ u ~  ( t )  [ j+i 1 
for i = 1, . . . , N ,  while the fractional volume in the interaction space reads 

IIi [S nj#, dJtj n, @ (er Xj+i(Jij/@E/ - K) 8 (Xj+ J; - N ) ]  

ni [S nj#i dJij8 ( ~ j # i  J; - N ) ]  
V =  (39) 

and the spherical normalization constraint for each i = 1, . . . , N is assumed as well 

C J ; = N .  (40) 
j#i 

It has been stressed [27] that the proper~quenched averages over the patterns { e / ]  cannot be 
defined by (2) and (3) only. The reason is that for 'spatially' correlated patterns-in contrast 
to the usual case, when Jij are of the order of one-the optimal connection matrices behave 
as Jij  Y O c a )  for i and j close enough. The averaging procedure, as performed in the 
previous section, remains, strictly speaking, valid only for continuous Gaussian inputs [28], 
or in the limit of small correlation length. Keeping these restrictions in mind, we proceed as 
usual and apply the replica method. In order to do this we define the three order parameters 

and their conjugated counterpm f@, Fa and Mu. 
We assume as beforedhe torus topology of the network and the rotational invariance 

of the correlation matrix C (see (10)). Taking the replica-symmetric ansatz arid performing 
all the Gaussian integrals, one arrives at the kee energy density function 3, which must 
be extremized with respect to all its variables (order parameters and their conjugated 
counterparts) 
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The functions Cl, Gz are given by 

W Tarkowski and M Lewmstein 

N 
- - - ( M E  + C f  - C F ) k  
- 2  
- 

where all the symbols (i.e. ((.))c) and functions (i.e. H [.I) are defined as in the previous 
section. The quantity bc reads 

with (6f]c being the Fourier components (see definitions (11)-(13)). Introducing the new 
variables g = f - F ,  r E-Q - q ancanticipating, as usual, that at criticallity the order 
parameters behave as E = E / r ,  f = f / r2 .  g = g / r  and M = M / r ,  one obtains the seven 
saddle-oint equations 

9 = Y(( (" cz .)) + G2(( ( E" NCbc + ZC) z))c 
E + Z )  c 

(49) 

(50) 

These equations may be solved numerically-see [ZS], in which we obtain the critical 
capacity curves for the case of the continuous Gaussian inputs. For binary ones, however, 
one has to use the perturbative approach (in the small correlation limit, i.e. when Cjr Y S j j , ) .  
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This is a consequence of the fact that (48)-(54) are systematically valid in that limit only. 
The approximate value of the storage ratio a, for the minimal stability parameter K = 0 
(see also c2.51) reads then 

This formula indicates that in the case of the storage of the ‘spatially’ correlated patterns 
in the Hopfield network the critical capacity ratio ac somewhat exceeds Cover’s limit 
a, ( K  = 0) = 2. 

4. ‘Semantically’ correlated patterns in perceptron 

In this section we consider the problem of the critical storage capacity for ‘semantically’ 
correlated patterns which can be, in general, described by (4). We will proceed along the 
lines of [19], and investigate unbiased patterns. 

We consider a perceptron with N binary neurons in the input layer, uj = i l  and a 
single output unit, q. The propagation rule then takes the form q = sign cy=l Jjoj). We 
investigate, as before, the existence conditions for a set of connections Jj that lead from 
a given set of U N  input patterns cr, p = 1, . . . , a N ,  to a given output qw, with a given 
stability K .  Once more we calculate the fractional volume in the interaction space of this 
set of connections; 

( 

I n , d J , n , o ( i l i , ~ j ( ~ j / ~ ) t r - ~ ) s ( C ,  J,?- N )  
V =  (56) nj dJj  6( Jj’ - N )  

The .ljs are again normalized according to 
when the averaged logarithm of V tends to -CO [l]. 

input-output correlations. We write the correlation function (4) in the form 

J j  = N. The critical storage a c ( ~ )  is attained 

We consider a very general class of ‘semantically’ correlated patterns that allow for 

where Cw = *I for & = 1, . . . ; cx N are not necessarily all equal. The motivations for 
writing the previous expression are as follows. 

(i) C,, is a matrix with positive elements and it takes care of the correlations decay 
with the increase of lp  - $1. 

(ii) We factor out qpq,r’, since only the quantity qw ((t,!’$)) qp, enters the calculations. 
(iii) Finally we have introduced the additional term&<wr which attends to the possible 

Expression (57) may be interpreted in various ways depending on the specific relations 

(i) when <, = Cw, we have the case of optimal input-oukut correlations in a perceptron; 
(ii) when q, = Fw and qw = c,!‘ for some i, we deal with the attractor network of the 

correlations of the signs of inputs and outputs. 

between qw and tw. In particular, 

Hopfield type; . .  
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(iii) finally, when ffi are statistically independent and unrelated to qr we have the case 
of minimal input-output correlation in a perceptron. 

In this section we calculate the volume (56) for exponentially correlated patterns. We 
assume that the patterns 6; are statistically independent for all j s  and have the mean zero. 
On the other hand, we shall take 

ffi%! = l l f i 4 L l d ‘ I f i ~  (58) 

where b denotes the bandwidth of the correlation matrix M,, and is equal to the inverse 
of the correlation length L,. 

We stress that the specific exponential form of the correlation function (58) or (57) is 
quite generic for ‘semantically’ associated patterns. Exponentially correlated patterns may 
also be easily generated in numerical simulations. They correspond to thermal equilibrium 
states of the one-dimensional king model with the Hamiltonian 

(($%jq = ‘Ififfie -blfi-fi’l 

The temperature T is then related to b through 

b=l /L ,=- In tanh( l /T) .  (60) 

For simplicity, we assume a torus geometry, so that Mfip8 is translationally invariant. 
The matrix fi is particularly convenient 1291, since its inverse is tridiagonal. Neglecting 
exponentially small terms 

(M-l)pfi, = ffi [(A +2Wfifi,  - B (&+,+I + &&)]<pc (61) 

where A = (1 - e-b) / (1 + e-b) and B = e-b/ (1 -e-”). 
The calculation of ((In V))  is performed with the help of replica method 

We calculate (( V”)), which after performing average over f s  takes the form 

Now, as in [l] and [I91 we introduce the overlap 
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Critical capacity is attiined when q"8 -+ 1, which means that there exists only one set 
of Jjs that fulfils the desired input-output relations. We also introduce the conjugated 
variables F@ to ensure the constraint (64). After performing integrations over i-: and J,? 
we may execute the remaining integrations of E@, q@, F@ with the help of the saddle-oint 
technique. Assuming replica-symmetric solution E' = E ,  quo = q,  F@ = F in the limit 
n + 0, the free energy density function 7, which remains to be extremized becomes 

(65) 
a a4 1 E l  1 F  

Fq - - +-ln(E + F) - -- - F=-- + - ln(1 - q )  + 
2 2 2(1 - q )  2 2 2  2 E + F  

where H ( q )  is defined through the relation 

where the elements of the matrix Tare Aefined as follows 

do6 = S i p  + (1 - &) 4 (67) 

with S,6 being the Kronecker delta. 

in the limit q + 1 the general expression for ac 
Now we determine the saddle point from (65) and after simple calculations we obtain 

Let us make a direct inspection of the function H. Denoting 

and using the expression for E-' we obtain 

We introduce two white noise variables x,, y ,  in order to disentangle terms in (70) that 
contain squares of sums over a. Both x,, y ,  are normally distributed random variables 
with mean zero and variance one. The limit n + 0 may then be performed explicitly and 
we get 
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In the limit q + 1, the maximum of the integrand gives the leading contribution, so that 
we obtain 

W Tarkowski and M Lewenrtein 

As we noted in [I91 the calculation of exact minimum on the right-hand side of (73) is 
by no means trivial. It is easy, however, to derive variational bounds on a,. A similar kind 
of bounds on ctc have recently been discussed by us [13,19]. We get 

The minimum on the right-hand side of (74) may be found exactly and is attained for A; = 0, 
provided K + CP. MPqch,, < 0 and = K + E,, M,,,h,, otherwise. The configuration 
A: on the left-hand side denotes, on, the other hand, any probe configuration which fulfils 
1; 2 K + EP, M,,.h,. for all p. 

Expression (74) is the main result of this section since it gives precise bounds of critical 
capacity a,. 

5. Storage capacity for optimal input-output correlations 

This case is obtained when the input correlations are in the mean equal to the output ones, 

This means that {, = 5,~. and the bounds (74) take the simpler form 
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Let us now consider the two limiting cases of small and large correlation lengths (or 

For b -+ CO we simply obtain the upper bound for a,, using the fact that for each w, 
b + CO and b --f 0, respectively). 

g f i  - - W’ e-bl”-J’’”lh,. is a Gaussian random variable of the mean zero and variance one, 

1 +e-b 
(1 - e - b ) G ( ~ ) ’  a c  < (77) 

The lower bound can be obtained by using as U‘ the same vector, which minimizes the 
function on the right-hand side of (74). 

The resulting formula is slightly complicated but can be simplified when K = 0. In 
this limit and for b -+ CO we neglect the correlation between g, and g,r for p # p‘, 
which is exponentially small. The quantity g, is then positive with probability 1/2 abd the 
contribution of ‘kinetic’ (proportional to B )  term on the left-hand side of (74) can easily be 
evaluated. As a result we obtain: 

We see that ac takes a value slightly larger than 2 which is Gardner’s result for uncorrelated 
patterns (see also [23]). 

The case b + 0 is much more interesting. The upper bound (77) is still valid. The 
effective lower bound can be obtained with the help of the probe configuration 

h E = K f g h  (79) 

where po is the value of p for which g, attains maximum. Note that for such a probe 
configuration the ‘kinetic’ term (proportional to B )  on the left-hand side of (74) does not 
contribute at all! 

After simple algebra we obtain for b -+ 0 

2 
< a  <- 2 

b (K’ + l ) ~  ‘ bG(K) ‘ 

Alternatively we may write 

This is the main result of this section. As we can see, when L, -+ CO, so does ac. In 
particular, when L, scales with N as L, - NX, while 0 < x < 1, so does ac. This provides 
an elegant generalization of Willshaw et al 131 result that predicts ac -+ 00 in the sparse 
coding case for maximally biased pattems. Our result, however, holds for unbiased pattems 
that are characterized by exponential correlations (i.e. also by a non-?anishing~overlap). 

We should stress that our result is very general. Our approach may be generalized to the 
case when the function on the right-hand side of (73) contains other terms proportional to 
(Ah - A,+*) , (A, - A,+s)’, etc. Such terms arise in a nakral way when we consider a very 
general class of correlation matrices of the form M(p-p’)  = W(lp-p’l) exp(-blp-p’l), 
where W(.) denotes a polynomial function of its argument. All terms containing differences 
of As vanish for constant probe functions, such as (79). This means that our result holds 

2 
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for practically arbitrary (not only exponential) shapes of the correlation function (58). In 
such a general case, the role of the coefficient A is undertaken by 

If MPP, decays with the increase of Ip-p‘I on a characteristic length scale L,, then A c( L, 
for L, -+ ca. Thus, the bounds (80) and (81) would indeed hold. 

Unfortunately, the lower bound in (81) cannot be obtained when the input-output 
correlations are not maximal. The cPfp+l cannot then be equal to 1 for all p and the 
kinetic term on the left-hand side of (74) contributes to this bound in such a case. 

In the next section we consider a simple example of such a situation. 

6. ‘Semantically’ correlated sets of data in the Hopfield network 

In the case of Hopfield neural network [17] the fractional volume V may be written as 
N 

v=nIS:  
i=1 

(83) 

where each of the partial fractional volumes is given by 

As we see, expression (84) corresponds to a perceptron with inputs tf and outputs e,!‘ 
 for^ j # i. We consider the correlation of the sort 

Such correlations are described by our general expression (58) provided CP = t,!‘, qP = ti P . 
It can be seen that the lower bound in (80) or (SI) changes dramatically because the input- 
output correlations are not explicit, as in expression (57). The ‘kinetic’ term in (73) in the 
present case undergoes the change 

and cannot, in general, be put equal to zero, since e,!’ and [:+’ may have different signs. 
All the further calculations are very similar to those from the previous section with only 

the change of (86). For the small correlation length (b + 00) we obtain the same upper 
bound on ac by setting A: = 0 for K + cP, MP&,. c 0 and A: = K + MP,,hPr 
otherwise. We take as A: on the left-hand side of (74) the same configuration as used for 
upper bound. Note that this configuration is independent from,F,!‘. The lower bound in (74) 
thus self-averages over $‘ and becomes 
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Forb  + 00 the last term on the left-hand side of (87) may be neglected and we obtain 

As we see, the lower bound becomes simply equal to Gardner's result. 
For the large correlation length b + 0 the upper bound does not change. The lower 

bound can be obtained again with A; = K + g,,, where po is the value of p for which g, 
attains a maximum. Unfortunately, the 'kinetic' term (86) does contribute to such a lower 
bound. One may see, however, that its contribution is not very large, since, as b + 0, er 
and er" become equal for most neighbouring pairs. We then obtain 

and, finally, 

We stress that the lower bound is finite, whereas the upper one diverges with b + 0. 
One should notice that we can apply a better approach in order to evaluate the upper 

bound of orc in (74) forb  + 0. It can be obtained by neglecting the positive 'kinetic' term 
from (73). A more careful analysis suggests that we neglect only part of the 'kinetic' term. 
We may, for instance, leave 

In this way we divide the set of As into a set of independent pairs. Still, the minimum on 
the right-hand side of (91) can, in principle, be determined exactly. Moreover, in the limit 
of strong correlationsb + 0 one can neglect terms proportional to A on the right-hand side 
of (91). One then obtains 

Since in the limit b + 0, g, becomes in 100% correlated, i.e. equal to g,+l, the upper 
bound is given by 

UC < ( ~ ~ ~ ( ~ + g l ) ( K + g l ) Z ( ~ - ~ 1 ~ 2 ) ~ ] - ' .  (93) 

Finally, we obtain 

One should stress that the both bounds undergo the dramatic change for the Hopfield 
network in comparison with the case of the perceptron with optimal input-output 
correlations. Both bounds remain finite, as b + 0. 

At the end let us recall the result of our paper [%I, in which we have shown that the 
bounds of the critical curve do not, practically, depend on the type of distribution of C, 
but only on its width. We expect that this observation will also hold for the situations 
considered in the present paper. 
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7. Conclusions 

In this paper we have considered the storage of correlated patterns in neural network 
memories. We applied Gardner’s program [l]  combined with the variational approach. 
We stressed that the sets of the correlated data correspond much closer to realistic physical 
and biological situations than simple uncorrelated patterns. Two kinds of correlations were 
considered: ‘spatial‘ and ‘semantic’ ones. 

The problem of ‘spatial‘ correlations may be solved exactly within the framework of 
Gardner’s program [l]  for a simple perceptron. The critical curves do not differ too much 
from Gardner’s original one [ 11. Especially, for K = 0 the maximal capacity takes the value 
ctc = 2. On the other hand, for the Hopfield neural network, the storage ratio may exceed 
Gardner’s result. The situation is much more complicated in the case of the ‘semantically’ 
Correlated data. The exact critical curve is hard to obtain. After ‘applying the variational 
method it is quite easy, however, to investigate the bounds of this curve. We generalized 
the result of Willshaw etal [3] for a simple perceptron and showed that the storage capacity 
a, tends to infinity as the correlation length L, increases, provided the optimal input-output 
correlations are present. For the Hopfield network such a situation does not occur and CY, 

remains finite as L, grows. 
There are several further questions concerning ?e storage of correlated data. It is, for 

instance, interesting to consider the so-called generalization error for correlated training sets 
[15,30] and to look for the optimal diluted network architectures in such a case [28]. As 
we expect, the structure of the set of patterns will determine the optimal structure of the 
network connections. 

W Tarkowski and M Lewenstein 
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